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Christian Tenllado and Manuel Prieto Matias

Department of Computer Architecture, ArTeCS Group,

Complutense University of Madrid, Spain.

Email: ribarrie@fdi.ucm.es

Mauricio Marin

DIINF, University of Santiago of Chile

Yahoo! Research Latin America, Santiago, Chile.

Email: mmarin@yahoo-inc.com

Abstract—Similarity search has been widely studied in the last
years, as it can be applied to several fields such as searching by
content in multimedia objects, text retrieval or computational
biology. These applications usually work on very large databases
that are often indexed off-line to enable the acceleration of on-
line searches. However, to maintain an acceptable throughput, it
is essential to exploit the intrinsic parallelism of the algorithms
used for the on-line query solving process, even with indexed
databases. Therefore, many strategies have been proposed in the
literature to parallelize these algorithms, both on shared and
distributed memory multiprocessor systems. Lately, GPUs have
also been used to implement brute-force approaches instead of
using indexing structures, due to the difficulties introduced by
the index in the efficient exploitation of the GPU resources. In
this work we propose a Multi-GPU metric-space technique that
efficiently exploits index data structures for similarity search in
large databases, and show how it outperforms previous OpenMP
and GPU brute-force strategies. Furthermore, our analysis covers
the effects of the database size and its nature.

I. INTRODUCTION

Similarity search has been widely studied in recent years

and it is becoming more and more relevant due to its applica-

bility in many important areas [1]. It is often undertaken by

using metric-space techniques on large databases whose ob-

jects are represented as high-dimensional vectors. A distance

function exists and operates on those vectors to determine how

similar the objects are to a given query object. A range search

with radius r for a query q, represented as (q, r), is the oper-

ation that obtains from the database the set of objects whose

distance to the query object q is not larger than the radius r.

However, the performance of this kind of searches is largely

dominated by the computation of the distance function, which

is known to be an expensive operation. The development of

techniques that provide efficient range searches becomes cru-

cial to promote the success of many applications that involve,

among others, multimedia information retrieval, data mining

or pattern recognition problems. Moreover, range search itself

can be considered as a basic search kernel, as it enables other

search operations (for instance, the nearest neighbors search),

which reinforces the necessity of its performance boost.

In the current technological context, one of the most promis-

ing alternatives for the acceleration of range search operations

is the exploitation of its intrinsic parallelism on Graphics

Processing Units (GPUs). Range searches provide different

levels of parallelism: we can process several queries in parallel,

several distance computations in parallel for a given query or

even exploit parallelism in the distance operation itself. This

scheme matches well with the architecture of the GPU, that

can execute a bunch of threads on a group of multiprocessors,

which execute the threads in small groups in lock-step (similar

to SIMD processors). Moreover, we currently have Multi-GPU

systems available, providing an addition level for parallelism

exploitation. However, these architectures have complex mem-

ory hierarchies, in which some of the levels can be controlled

by software. It has been empirically shown that it is crucial to

efficiently exploit this memory system to achieve a significant

performance improvement when using GPUs to accelerate a

given application.

Previous related work, which focusses on search systems

devised to solve large streams of queries, has shown that con-

ventional parallel implementations for clusters and multi-core

systems, that exploit coarse-grained inter-query parallelism,

are able to improve query throughput by employing index data

structures constructed off-line upon the database objects [2].

These index structures are used to perform an efficient filtering

on the database and reduce the search space. However, their

use introduces a complex and irregular memory access pattern

in the search algorithm, making it very inefficient for the

GPU memory system. The cost of the additional data transfers

introduced by using the index can hide the can hide the benefits

of keeping the database objects smartly indexed.

To the authors knowledge, this paper presents the one of

the first evaluations of GPUs as accelerators for metric-space

range searches on large databases. In our study, we analyze

the impact of the index structure used and the size and nature

of the database. We first target the case in which the full

database can be stored in the GPU memory (several GBs),

and propose an efficient mapping scheme for two relevant

index structures: List of Clusters [3] and SSS-index [4]. The

performance achieved with these single-GPU range search

methods is compared with optimized implementations of the

same index based searches, both sequentially and in parallel,

on leading edge shared memory multiprocessors. Once the best

single-GPU strategy has been selected, we study its scalability

to Multi-GPU systems and consider databases that do not fit

in the device memory of a single GPU. The results show that

Multi-GPU systems can be efficiently used to significantly

improve throughput in metric-space range searches.

The remaining of this paper is organized as follows. Sec-

tion II gives some background on similarity search and metric-
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Fig. 1. Example of range query (q,r)

space databases, and summarizes some previous related work.

Section III describes the main features of our computing plat-

form and its programming model, while Sections IV and V de-

scribe the implementations of the range search methodologies

under analysis in this paper, both on Single-GPU and shared

memory multi-core systems. Section VI present the results of

the analysis on single-GPU systems and Section VII analyzes

its scalability to multi-GPU platforms. Finally, Section VIII

summarizes the main conclusions of this work.

II. SIMILARITY SEARCH BACKGROUND AND RELATED

WORK

Searching objects from a database which are similar to a

given query object is a problem that has been widely studied

in recent years. The solutions are based on the use of a data

structure that acts as an index to speed up the processing of

queries. Similarity can be modeled as a metric space as stated

by the following definitions:

Metric Space [5]: A metric space (X, d) is composed

of an universe of valid objects X and a distance function

d : X×X → R
+ defined among them. The distance function

determines the similarity between two given objects and holds

several properties such as strict positiveness (d(x, y) > 0 and

if d(x, y) = 0 then x = y), symmetry (d(x, y) = d(y, x)), and

the triangle inequality (d(x, z) ≤ d(x, y)+d(y, z)). The finite

subset U ⊂ X with size n = |U|, is called the database and

represents the collection of objects of the search space. There

are two main queries of interest, kNN and range queries.

Range Query [1]: As shown in figure 1, the goal is to

retrieve all the objects u ∈ U within a radius r of the query q
(i.e. (q, r)d = {u ∈ U/d(q, u) ≤ r}).

The k Nearest Neighbors (kNN) [6]: The goal is to

retrieve the set kNN(q) ⊆ U such that |kNN(q)| = k and

∀u ∈ kNN(q), v ∈ U− kNN(q), d(q, u) ≤ d(q, v).
To solve both kind of queries and to avoid as many distance

computations as possible, many indexing approaches have

been proposed. In this paper we have focused on the List of

Clusters (LC) [3] and SSS-Index [4] indexes since (1) they

are two of the most popular non-tree structures that are able

to prune the search space efficiently and (2) they hold their

indexes on dense matrices which are very convenient data

structures for mapping algorithms onto GPUs. We are not

affirming that these indexes are the only suitable ones for

the GPU, but their properties make them good candidates

to be it. Besides, finding the best metric index for GPU is

not the target of this paper; we mainly want to show the

great performance achievable using a metric index on GPU

compared to sequential and traditional multi-core approaches.

In [7] the authors propose a range query solution on a GPU

platform, using the Spaghettis metric index [8]. This index

is based on pivots, and they use a database of words. In the

present work we also use an index based on pivots called

SSS-Index [4], and also we propose a solution using the LC

index [3] (which is based on clustering), that outperforms the

previous indexes based on pivots. Also, it is important to say

that although we get best results in real time, we do not use

exactly the same databases and graphic cards.

[9] proposes a heap based implementation of LC and SSS-

Index to solve kNN queries on GPU. Due to the different

nature between kNN and range queries we cannot rightly reuse

the same implementations for our purposes. In this paper we

present ad-hoc GPU implementations to solve range queries,

and besides we propose and compare different strategies to

efficiently exploit a multi-GPU platform.

In the following subsections we explain the construction of

the two implemented indexes (LC and SSS-Index) and describe

how range queries are solved using them.

A. List of Clusters (LC)

This index [3] is built by choosing a set of centers c ∈ U
with radius rc where each center maintains a bucket that keeps

tracks of the objects contained within the ball (c, rc). Each

bucket holds the closest k-elements to c. Thus the radius rc is

the maximum distance between c and its k-nearest neighbor.

The buckets are filled up sequentially as the centers are cre-

ated and thereby a given element i located in the intersection

of two or more center balls remains assigned to the first bucket

that hold it. The first center is randomly chosen from the set

of objects. The next ones are selected so that they maximize

the sum of the distances to all previous centers.

A query q with radius r is solved by scanning the centers

in order of creation. For each center c, the distance d(q, c) is

always computed and, only if d(q, c) ≤ rc + r, it is necessary

to compare the query against the objects of the associated

bucket. This process ends up either at the first center that

holds d(q, c) < rc − r, meaning that the query ball (q, r) is

totally contained in the center ball (c, rc), or when all centers

have been considered.

B. Sparse Spatial Selection (SSS-Index)

During construction, this pivot-based index [4] selects some

objects as pivots from the collection and then computes the

distance between these pivots and the rest of the database. The

result is a table of distances where columns are the pivots and

rows the objects. Each cell in the table contains the distance

between the object and the respective pivot. These distances

are used to solve queries as follows. For a range query (q, r)
the distances between the query and all pivots are computed.

An object x from the collection can be discarded if there exists



a pivot pi for which the condition |d(pi, x)−d(pi, q)| > r does

hold. The objects that pass this test are considered as potential

members of the final set of objects that form part of the

solution for the query and therefore they are directly compared

against the query by applying the condition d(x, q) ≤ r. The

gain in performance comes from the fact that it uses the table

to discard objects instead of computing the distance between

the candidate objects and the query.

A key issue in this index is the method that calculates

the pivots, which must be good enough to drastically reduce

total number of distance computations between the objects

and the query. An effective method is as follows. Let (X, d)
be a metric space, U ⊂ X an object collection, and M
the maximum distance between any pair of objects, M =
max{d(x, y)/x, y ∈ U}. The set of pivots contains initially

only the first object of the collection. Then, for each element

xi ∈ U, xi is chosen as a new pivot if its distance to every pivot

in the current set of pivots is equal or greater than αM , being

α a constant parameter. Therefore, an object in the collection

becomes a new pivot if it is located at more than a fraction of

the maximum distance with respect to all the current pivots.

III. GRAPHIC PROCESSING UNITS (GPU)

GPUs have emerged as a powerful cost-efficient many-core

architecture. They integrate a large number of functional units

following a SIMT model. We develop all our implementations

using NVIDIA graphic cards and its CUDA programming

model ([10]). A CUDA kernel executes a sequential code on a

large number of threads in parallel. Those threads are grouped

into fixed size sets called warps1. Threads within a warp

proceed in a lock step execution. Every cycle, the hardware

scheduler of each GPU multiprocessor chooses the next warp

to execute (i.e. no individual threads but warps are swapped

in and out). If the threads in a warp execute different code

paths, only those that follow the same path can be executed

simultaneously and a penalty is incurred.

Warps are further organized into a grid of CUDA Blocks:

threads within a block can cooperate with each other by (1)

efficiently sharing data through a shared low latency local

memory and (2) synchronizing their execution via barriers.

In contrast, threads from different blocks can only coordinate

their execution via accesses to a high latency global memory.

Within certain restrictions, the programmer specifies how

many blocks and how many threads per block are assigned

to the execution of a given kernel. When a kernel is launched,

threads are created by hardware and dispatched to the GPU

cores.

According to NVIDIA the most significant factor affecting

performance is the bandwidth usage. Although the GPU takes

advantage of multithreading to hide memory access laten-

cies, having hundreds of threads simultaneously accessing the

global memory introduces a high pressure on the memory bus

bandwidth. The memory hierarchy includes a large register file

(statically partitioned per thread) and a software controlled low

1Currently, there are 32 threads per warp

latency shared memory (per multiprocessor). Therefore, reduc-

ing global memory accesses by using local shared memory to

exploit inter thread locality and data reuse largely improves

kernel execution time. In addition, improving memory access

patterns is important to allow coalescing of warp loads and to

avoid bank conflicts on shared memory accesses.

IV. RANGE QUERIES

In this section we describe the mapping of three range

search algorithms onto CUDA-enabled GPUs: a brute-force

approach and two index-based search methods.

All of them exploit two different levels of parallelism. As in

some previous papers [11] [12] we assume a high frequency of

incoming queries and exploit coarse-grained inter-query paral-

lelism, i.e. we always solve nq queries in parallel. Moreover,

we also exploit the fine-grained parallelism available when

solving a single query. Overall, each query is processed by a

different CUDA Block that contains hundreds of threads (from

128 to 512, depending on the specific implementation) that

efficiently cooperate to solve it. Communication and synchro-

nization costs between threads within the same CUDA Block

are rather low, so this choice looks optimal to fully exploit the

enormous parallelism present in range search algorithms.

We introduced a brute force algorithm which is used as

point of comparison with the indexed methods.

A. Brute Force Algorithm

The overall idea is that each CUDA Block processes a

different query and within a CUDA Block, each thread com-

putes the distance between the query and a subset of the

elements of the database. The database is a D × E matrix,

where D is the dimension of its elements and E is the size

of the database, which has been uploaded previously to device

memory. Queries are also uploaded into device memory but

the threads of each CUDA Block cooperate to transfer their

associated query to the shared memory to accelerate its access

(this is the first step of the algorithm). Afterwards, threads

compute the distance between the query and the elements of

the database following a Round-Robin distribution. Most work

is performed within the device distance function. Database

elements are stored column-wise to increase the chances of

coalesce memory accesses when computing these distances

since that way consecutive threads have to access adjacent

memory locations.

Depending on the application, when an element is found as a

result, different information may be retrieved. For the purposes

of this work, a counter is increased to track the number of

elements found by each thread, but no further processing or

transfers are performed.

B. List of Clusters (LC)

The data structure that holds the LC index consists of 3

matrices denoted as CENTER, RC and CLUSTERS in algo-

rithm 1. CENTER is a D ×Ncen matrix (D is the dimension

of the elements2 and Ncen is the number of centers), where

2For the Spanish words database, D is the maximum size of a word.



each column represents the center of a cluster, RC is an array

that stores the covering radius of each cluster, and CLUSTERS

is a D ×Nclu matrix (Nclu is the number of elements in all

the clusters) that holds the elements of each cluster. Index

information is stored column-wise to favor coalesce memory

accesses as in the Brute Force Technique.

Algorithm 1 shows the pseudocode of the main CUDA

kernel that solves a range query (query, range) using the

LC index. Each CUDA Block processes a different query,

which is transferred from device memory to shared memory

(line 6) since it is accessed by all its threads when performing

distance evaluations. Once the query has been saved into the

shared memory, the for loop starting at line 11 iterates over the

different clusters. Each thread computes the distance between

q and a subset of elements of CENTER following a Round-

Robin distribution. Most work is performed again within the

device function distance(). If distances are lower than

range, the respective centers cluster are appended to the list

of results in found() (line 14). Clusters are marked for

exhaustive search at line 16 only if their respective center

balls have some intersection with the query ball. A property

of this index (given by its construction) is that the exhaustive

search over a cluster can be pruned if the query ball is totally

contained in a given center ball. If this is the case (line 17),

then we do not consider the subsequent clusters and delimit

the number of clusters at line 18.

Finally, the for loop starting at line 24 processes all the ele-

ments of the selected clusters as in the Brute Force technique.

C. SSS-Index

The SSS-Index consists of 3 matrices denoted as PIVOTS,

DISTANCES and DB. PIVOTS is a D × Npiv matrix (D is

the dimension of the elements and Npiv is the number of

pivots) where each column represents a pivot, DISTANCES

is a Npiv ×NDB matrix (NDB = number of elements of the

database) where each element is the distance between a pivot

and an element of the database, and DB is a D×NDB matrix

where each column represents an element of the database. As

in the LC, the index information is stored column-wise to favor

coalesce memory accesses.

As in the LC, each CUDA Block transfers its associated

query to shared memory due to its frequent access. Once

a synchronization ensures the query has been copied before

being accessed, each thread performs the distance evaluations

between the query and a subset of pivots following a Round-

Robin distribution. And finally, the rows of DISTANCES are

distributed across threads to test if their respective elements

of the database can be discarded. For every non discarded

element, a distance evaluation is performed.

In [4], authors have found empirically that α = 0.4 yields

the minimal number of distance evaluations. Our own exper-

iments on GPUs confirm this behavior: the more pivots are

used (up to a certain threshold), the less distance evaluations

are performed. However, as shown in Figure 2, the best

performance is obtained with just one pivot. Indeed the more

pivots used, the worst the execution time becomes. Irregularity

Algorithm 1 LC search algorithm CUDA kernel.

{Each row of Queries is a query.}
{D is the dimension of the elements in the database and bsize

is the number of elements of each cluster.}

global range SearchLC(float **CENTERS, float
**RC, float **CLUSTERS, float **Queries, float
range)
1: shared float query[D]
2: shared int exhaustive[Ncen ]
3: shared int minC=Ncen

4:
5: for (i=threadIdx.x; i<D; i+=blockDim.x) do

6: query[i] = Queries[blockIdx.x][i]
7: end for
8:
9: syncthreads()

10:
11: for (i=threadIdx.x; i<minC; i+=blockDim.x) do

12: dist = distance(CENTERS, i, query)
13: if dist <= range then

14: found()
15: end if

16: exhaustive[i] = dist <= RC[i] + range

17: if dist < RC[i] - range then
18: atomicMin(&minC, i)
19: end if

20: end for

21:
22: syncthreads()
23:
24: for (i=threadIdx.x; i<Nclu && i/bsize<=minC; i+=blockDim.x) do

25: if exhaustive[i/bsize] == 1 then
26: if distance(CLUSTERS, i, query) <= range then

27: found()
28: end if
29: end if

30: end for

explains this apparent contradiction: when using more pivots,

threads within a warp are more likely to diverge. Moreover,

memory access pattern becomes more irregular and hardware

cannot coalesce them. This leads to the observed increase

in the number of Read/Write operations. In summary, less

distance evaluations do not pay off due to the overheads caused

by warp divergences and irregular access patterns. Overall, just

one pivot provides the optimal performance for many of our

reference databases.

V. OPENMP AND SEQUENTIAL IMPLEMENTATIONS

We have compared our GPU-based implementations against

sequential and OpenMP-based counterparts. As a basis we

have taken the proposals for implementation on multi-core

systems introduced on [12]. In the so-called Local method,

queries are distributed across threads following a round-robin

distribution. This is the best alternative for high query traffic

since its synchronization overheads are very low. Authors

have also investigated additional methods for exploiting fined-

grained parallelism when query traffic is low at the expense of

higher synchronization cost. In those cases, queries are further

split into a number of tasks, which are distributed across cores

(instead of distributing queries). In both cases the index is

constructed prior to the searching process, and all threads have
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TABLE I
MAIN FEATURES OF THE COMPUTING PLATFORM FOR SEQUENTIAL AND

OPENMP IMPLEMENTATIONS.

Processor 2xIntel Quad-Xeon (2.66 GHz)

L1 Cache 4x32KB + 4x32KB (inst.+data)
8-way associative, 64byte per line

L2 Unified Cache 2x4MB (4MB shared per 2 procs)
16-way associative, 64 byte per line

Memory 16GBytes, (4x4GB) 667MHz
DIMM memory, 1333 MHz system bus

Operating System GNU Debian System Linux
kernel 2.6.26-SMP for 64 bits

Intel C/C++ Compiler -O3 -march=pentium4 -xW -ip -ipo
v11.0 (icc) Parallelization with OpenMP: -openmp

access to it (it is allocated on main memory). The number of

threads is always equal to the number of cores, and each thread

is mapped onto a different core.

For the purpose of this paper we have focused on algorithms

for high query traffic, and therefore we have chosen the

Local method as a reference for our implementations. The

sequential implementation is based also on this code, but

removing OpenMP primitives and pragmas (essentially the

same implementation but just with one thread).

VI. SINGLE GPU EVALUATION

All our GPU experiments were carried out on a NVIDIA

Tesla C1060 which is shipped with 30 multiprocessors, 8

cores per multiprocessor, 16KB of shared memory and 4GB

of device memory. The host CPU is an Intel’s Clovertown pro-

cessor with 16 GB of RAM. Table I details the experimental

environment used with the OpenMP implementations.

We have used two different reference databases:

Spanish : a spanish dictionary with 51,589 words. We used

the edit distance [13] to measure similarity. We processed

40,000 queries selected from a sample of the Chilean Web

which was taken from the TODOCL search engine. This can

be considered a low dimensional metric space.

Images : We took a collection of images from a NASA

database containing 40,700 images vectors, and we used

them as an empirical probability distribution from which we

generated a large collection of 120,000 random image objects.

We built each index with the 80% of the objects and the

remaining 20% objects were used as queries (23,831 queries).

In this collection we used the euclidean distance to measure

the similarity between two objects. Intrinsic dimensionality of

this space is higher than the dimentionality of the previous

database, but it is still considered low.

In the vector database (Images) the radii used were those

that retrieve on average the 0.01%, 0.1% and 1% of the

elements of the database per query. In the Spanish database

the radii were 1, 2 and 3. Similar values have been also used

in previous papers [12], [14]. In all the proposed methods, the

set of queries are previously copied to device memory.

Regarding the GPU implementation, we performed a wide

exploration to obtain the best parameters for each indexed

structure. Regarding LC we found that 64 elements per cluster

is the best option for the vector database, while 32 performs

the best in the Spanish database. We already discussed SSS-

Index tuning in Section IV-C. The conclusions there drawn

hold for the Images database, so a single pivot (α = 0.66) is

used. However, for the Spanish database it is better to use 68

pivots (α = 0.5).

Figure 3 illustrates the performance characteristics of our

GPU implementations. Brute Force stands for the exhaustive-

search algorithm. LC and SSS-Index show the results for the

two implemented indexing mechanisms with the parameters

indicated above. All figures are normalized to the largest value

of each version.

We first place our attention on the total number of distance

evaluations (Figure 3(a)). Both database behaves as expected:

indexing mechanisms do significantly decrease the number of

distance evaluations when compared to the brute force search

method. SSS-Index outperforms LC in the number of distance

evaluations performed with the Spanish database. However,

since we just used one pivot for the Images to maximize

performance, its filtering efficiency is hugely penalized.

One would expect that running times mimic the trend shown

by the distance evaluations but results in Figure 3(b) partially

contradicts this intuition: the brute force search algorithm

behaves better than expected in the Images database. It equals

and even improves SSS-Index performance. With Spanish

database changes are not so drastic, but LC becomes the best

approach even if it performs more distance evaluations.

Figure 3(c) gives the clue: the regularity of the brute

force algorithm leads to a more GPU aware access pattern.

Coalescing and alignment of memory access heavily influ-

ences performance on current GPUs. As stated in Section III,

when a warp launches misaligned or non-consecutive memory

accesses, hardware is not able to coalesce it and a single

reference may become several separate accesses. LC code

is also quite regular and, moreover, it performs much less

distance evaluations thus reducing the number of memory

accesses. This explain the sustained superior performance of

LC over the other implementations

Focusing on overall performance, Figure 4 shows the speed-

ups of all our implementations taking as reference the perfor-
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mance of a sequential brute force version executed in a single

CPU. We show results for the Spanish database because it can

discuss different scenarios not present in the Images database.

Table I describes the CPU nodes used for the sequential and

OpenMP experiments.

The first two columns of Figure 4 are the speed-ups of

sequential implementations of the two indexes,LC and SSS-

Index . The next two columns are the speed-ups considering

the OpenMP implementation run on 8 core server. Finally,

the last two columns of this figure are the speed-ups of our

single GPU implementations described in Section IV. Please

note that we tune each implementation to attain the maximum

performance, so index parameters may vary across implemen-

tations. We run the search with three different ranges. Given

the large speed-up variations, we separate the results in two

figures.

Overall, GPU approaches largely outperforms OpenMP ap-

proaches which was expected given the superior capabilities of

the GPU. One common and expected trend is that, the smaller

the radius employed, the larger the performance benefits of

indexing (sequential or parallel) techniques. Remind that the

reference case is the exhaustive search (i.e. all the possible dis-

tance evaluations are performed). If we increase the range of

the search, the number of distance evaluations gets increased

for the indexed implementations, thus narrowing the gap with

brute-force implementation.

OpenMP implementations scale worse than GPU versions

when compared with their respective sequential implementa-

tions, getting speed-ups of 4.4x, 4.0x and 3.8x for LC and 3.4x,

3.6x and 3.9x for SSS-Index. The common memory controller

is a bottleneck for the multi-core sever, since accesses from

the 8 cores are issued concurrently. Conflicting accesses are

then serialized, thus decreasing potential performance gains.

Current graphic processor units overcome this limitations

offering an enormous bandwidth between processing elements

and the DDR memory. Access coalescing plays a crucial role

in the right exploitation of this feature. Moreover, fine grained

multithreading helps to partially hide the unavoidable and long

memory latencies.

For some readers, GPU speed-up factors may not look so

impressive taken into account that our GPU has 30 multi-

processors on-board, compared with the 8-core Xeon based

server used for OpenMP experiments. However, it is impor-

tant to remind that each of this NVIDIA multiprocessor is

extremely simpler than the Core/Nehalem michroarchitecture

based Intel CPUs; instruction level parallelism is almost not

exploited while it represents the main source of performance

for complex out-of-order processors.

When we look the details of the index methods, it is relevant

to note that, for the smallest radii SSS-Index runs faster than

LC in all platforms. This just confirms the results shown in

Figure 3(b).

When radii becomes 2, the GPU trend is reversed (again

announced in Figure 3(b)). However, both the sequential and

the OpenMP implementations of SSS-Index still outperforms

their LC counterparts. It sounds reasonable since, as shown

in Figure 3(a), SSS-Index performs much less distance eval-

uations than LC. Regarding the biggest radii the previous

trend is confirmed and LC now always outperforms SSS-Index:

independently of the platform, the huge irregularity inherent

to SSS-Index does counteract the benefits of the saved distance

evaluations and overall performance degrades very fast with

large radii.

Regarding Images database, the exhibited behavior match

that of the largest radii: LC consistently outperforms SSS-

Index for any search range. Motivated by this finding, we

decide to adapt our GPU LC implementation to a multi-GPU

environment. Implementation details and results are shown in
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Fig. 4. Speed-ups of the SSS-Index and LC using different platforms (on
Spanish database), over sequential brute force algorithm, with radius (a) 1,
(b) 2 and 3.

the next section.

VII. MULTI-GPU STRATEGIES

In this section we propose and compare strategies using

the LC (because its good results on Section VI) on a multi-

GPU platform. [11] and [2] have shown several strategies to

distribute the LC on a cluster of processors connected by

an Infiniband 1000 MB/s network. Due to the differences

between this platform and the multi-GPU server, the same

results cannot be applied in this case. But, the work shown on

these publications was taken as basis for this section.

As we are able to manage all the GPUs memories, which

allows us to store a bigger database. To exploit this property,

we just take account strategies that create a global index

distributed among the device memories of the GPUs. Below

we present and compare two different strategies, the first (2-

Stages Strategy) process a percentage of the searching on CPU,

whereas the second (1-Stage Strategy) process all the searching

on GPU.

A. 2-Stages Strategy

The main idea is to divide the searching process of a query

batch in two stages. The first stage establish which GPU must

process which cluster, and the second calculates the distances

between the cluster and the queries.

The clusters are distributed in a circular manner, and all the

GPUs have a map that indicates the ID of the GPU where

each cluster is stored. In order that any GPU could decide

which clusters must be compared with a particular query, all

the GPUs have a copy of all the centers and its covering radius.

Because the latter, is possible to distribute the queries among

the GPUs, each query to a single GPU.

In the first stage, the centers are distributed in a circular

manner among the threads, to get the discarded clusters and the

clusters that must be compared with the queries. This would

correspond to the process made by lines 11-20 of the (1-GPU)

Algorithm 1. After this, each GPU indicates (in a matrix) to

the rest of them what of their clusters must be compared with

what of the queries. This information must be stored in device

memory because it is an input parameter for the next stage.

In the second stage, each GPU launches P kernels (P : num-

ber of GPUs). The kernel i performs the distance evaluations

between clusters and queries established by the i-th GPU.

After that, is required to read from device memory the input

parameter, that indicates which cluster must be accessed.

This would correspond to the lines 24-30 of the (1-GPU)

Algorithm 1.

B. 1-Stage Strategy

The aim is to solve each query in just one step, avoiding

making a scheduling for each query. The centers and their re-

spective clusters are distributed among the GPUs, and because

of this, each query must be processed by all the GPUs.

Each GPU perform the distance evaluations between centers

and queries. By each non-discarded cluster, their elements are

compared against the query in the same step.

One advantage of this strategy is that it avoids readings from

device memory, because the clusters that must be accessed are

known in the same step. But a disadvantage, is that it is not as

efficient as the 2-Stage strategy which stops a searching when

a query is contained in a cluster (line 17 in Algorithm 1).

C. Experimental Results on multi-GPU Strategies

In the experiments we used a multi-GPU server with 4

GPUs. Each one of these, is a NVIDIA Tesla C1060 with the

same features of the GPU used in Section VI. In this section

we used bigger databases than Section VI to try to exploit the

memory capacity of the platform. They are described below.

Words Database: This database is a merge of dictionaries

from United Kingdom. From this database we chose equidis-

tant words to create new databases of 100000, 200000, 500000

and 1 million of elements. The query file of 40000 elements

was the same as that used in Spanish database (Section VI).

Vectors Database: As we did in Images database, we took

a NASA database containing 40700 images vectors, and we

used them as an empirical probability distribution to generate

databases of size 100000, 200000, 500000 and 1 million. The

query file contains 23831 elements.

2-Stage strategy is designed to better balance the work

amongst the available nodes. Even if it succeeds, it introduces

extra CPU-to-GPU communication that spoils the expected
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Fig. 5. Speed-up of the multi-GPU Strategies on the a) vectors database,
and b) words database

TABLE II
REAL TIME IN SECONDS FOR THE LC ON VECTORS DATABASE

(RECOVERING 1% OF THE DB) USING THE DIFFERENT PLATFORMS. THE

QUERY FILE WAS A LOG WITH 23831 QUERIES.

LC multi-core (8 cores) 1 GPU 4 GPUs (1-Stage strategy)

100000 elems. 14.6 1.6 0.64

200000 elems. 42.6 3.24 1.01

500000 elems. 109.7 9.16 2.11

1000000 elems. 224.5 17.74 3.97

benefits. Moreover, due to the nature of the parallelization

followed in the 1-Stage strategy, there is no inter-GPU commu-

nication required and the only relevant communication penalty

is the potential unneeded copies of queries to certain GPU

nodes. This explains the sustained better performance of 1-

Stage strategy over the 2-Stage one. However, we can observe

in the words database (see 5(a)), performance differences are

significantly lower than that of the vectors database case. As

we showed in Section VI, LC makes much more reduction of

the number of distance evaluations in the words database; the

2-Stage strategy benefits more from this extra filtering since

it better balances the work load.

It is also worth noting that, as Figure 5, we observe a super-

lineal speedup (up to x4.5 speedup with just 4 GPUs) for the 1-

Stage strategy as the size of the problem increases. This can be

explained through the occupancy of each version. As stated in

line 2 of Algorithm 1, the amount of shared memory required

by our implementation is proportional to the size of the index

stored in the node. For the single GPU implementation, the

whole index (i.e. the centers of all the clusters) are stored

in the node, limiting the potential occupancy of the node up

to 50%. Since the index itself is distributed across nodes,

using 4 GPUs results in 100% occupancy and thus better

exploits the available resources by launching more thread

blocks concurrently.

Finally, Table II shows the real execution times of all our

implementations for the LC strategy over the vectors database.

VIII. CONCLUSIONS

In this paper we have presented efficient implementations

of suitable indexing mechanisms which are mapped on CUDA

based GPUs. In the experiments, they outperform both opti-

mized OpenMP and sequential implementations.

We found that the optimal parameters in the context of the

GPU, for both List of Clusters and SSS-Index, are extremely

different than those found on the sequential and OpenMP

implementations. In particular, the best GPU implementation

found for SSS-Index with vectors databases uses a single pivot

to prune the search space, which shows that the SSS algorithm

is inefficient under this context, since this pivot is selected at

random among the database objects.

The List of Cluster is the index with best performance on

GPU, achieving a speed-up of 264x over the sequential brute

force algorithm with the words database, and 138x with the

vector database.

Finally, we compared and proposed different strategies for

the LC using a multi-GPU platform, exposing the difficulties

of dealing with this kind of platform. We obtained a super-

linear speed-up over the single GPU version.
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